
Colvin Run Phase II @ Lake Fairfax Stream Restoration Project



A Fairfax County, VA, publication August 30, 2022

Project Area

Project Design and Construction Team

- Stormwater Planning Division
- Fairfax County Park Authority
- Utilities Design and Construction Division
- Maintenance and Stormwater Management Division
- Urban Forest Management Division
- Land Development Services
- Fairfax County Board of Supervisors
- Wetland Studies and Solutions, Inc.
- Construction Contractor To Be Determined during Construction
 Contracting Phase

Restoration Project Goals

Goal: Improve water quality through restoration of approximately 7,600 feet of stream by returning the physical characteristics of the channel to dynamic equilibrium and enhancing the ecological functions and processes within the riparian corridor.

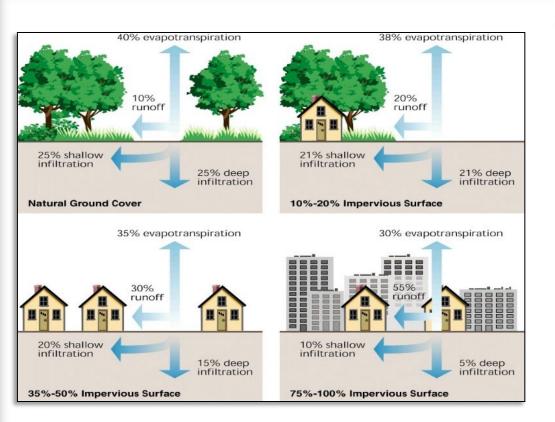
Objectives:

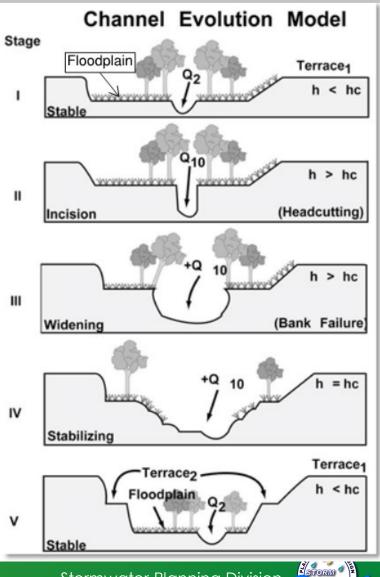
- ➤ Sustainability
- ➢ Floodplain connectivity
- ➤Grade control
- ➢ Hyporheic Zone enhancement
- ➢ Bioengineering
- ➤Infrastructure protection
- Stakeholder coordination

Restoration Project Social Goals

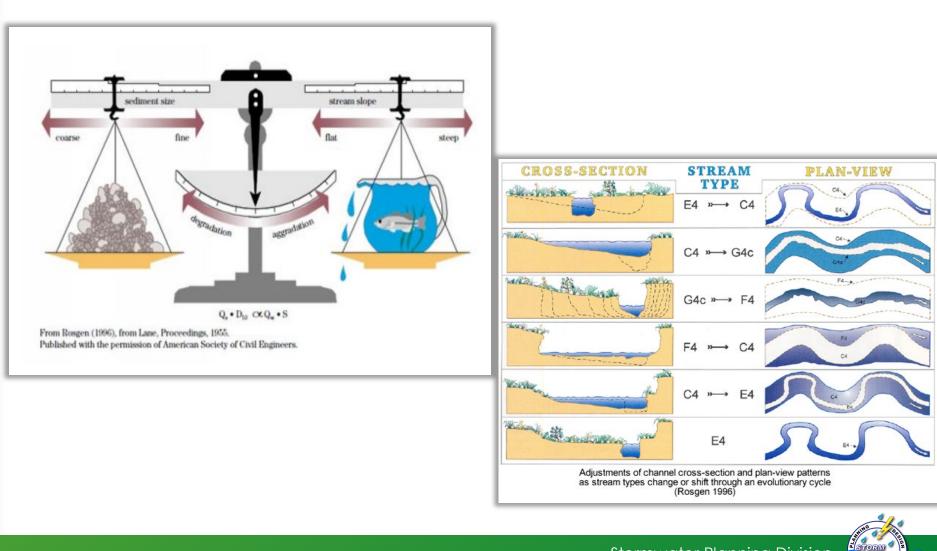
- 1. Maintain open communication and share information.
- 2. Coordinate design and construction with property owner, community and stakeholders.
- 3. The restoration project as a resource for residents; improve access/safety and park user's experience, preservation of land and natural resources, improve water quality, improve riparian habitat, educational opportunities...

Stream Restoration Functions


Stream Functions Pyramid


A Guide for Assessing & Restoring Stream Functions » FUNCTIONS & PARAMETERS

		5	BIOLOGY » FUNCTION: Biodive and riparian life » PARAMETERS: Communities, Benthic Macroinverte Landscape Connectivity	Microbial Communities, Macroph	yte		
	4		COCHEMICAL » FUNCTION: Te matter and nutrients » PARAMETE				
	3 GEOMORPHOLOGY » FUNCTION: Transport of wood and sediment to create diverse bed forms and dynamic equilibrium » PARAMETERS: Sediment Transport Competency, Sediment Transport Capacity, Large Woody Debris Transport and Storage, Channel Evolution, Bank Migration/Lateral Stability, Riparian Vegetation, Bed Form Diversity, Bed Material Characterization						
$\langle \rangle$: Transport of water in the channel, o oundwater/Surface Water Exchange	n the floodplain, and through sedi	ments » PARAMETERS:	Floodplain	$\langle \rangle$
1	HYDROLOGY » FU Relationship, Flood Frequ		t of water from the watershed to the	channel » PARAMETERS: Chan	nel-Forming Discharge, Pr	ecipitation/Runoff	
		1			1		
		Geolog	у	C	limate		
Stormwater Planning Division							



Hydrology and Hydraulic

Geomorphology

Stormwater Planning Division

Restoration Strategies Example, Crook Branch

- Floodplain Reconnection
- Grade control
- Enhance hyporheic zone
- Stable vegetated banks

Stormwater Program Drivers

- Clean Water Act, 1972
 - Municipal Separate Storm Sewer Permit (MS-4)
 - Chesapeake Bay Total Maximum Daily Loads (TMDL)
 - Regulates amount of pollutants in waterways (Chloride, Nitrogen, Phosphorus, Suspended Solids, PCBs, etc...)
 - Local TMDLs (sediment, bacteria, and PCBs)
 - Erosion and Sediment Control
- Inspection and maintenance
- Dam Safety
- FEMA/Floodplain programs
- Emergency and Flood Response
- Watershed planning, monitoring, evaluation, project implementation

Water Quality Benefits

- Annual Pollutant Load Reductions via erosion prevention, hyporheic zone biogeochemical processes and floodplain connectivity/storage:
 - Phosphorous: 245.71 lbs./yr.
 - Nitrogen: 913 lbs./yr.
 - Total Suspended Solids: <u>78,904.62 lbs/yr.</u>

12

Stormwater Planning Division

Design Development

Stream Functions Pyramid

A Guide for Assessing & Restoring Stream Functions » OVERVIEW

5 BIOLOGY » Biodiversity and the life histories of aquatic and riparian life

4 PHYSICOCHEMICAL » Temperature and oxygen requ

• Temperature and oxygen regulation; processing of organic matter and nutrients

3 GEOMORPHOLOGY » Transport of wood and sedi

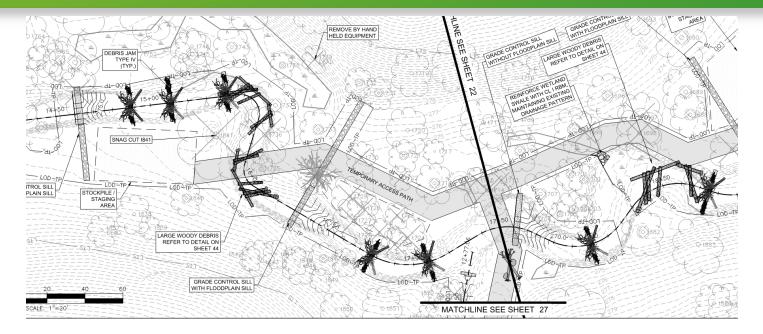
Transport of wood and sediment to create diverse bed forms and dynamic equilibrium

HYDRAULIC »

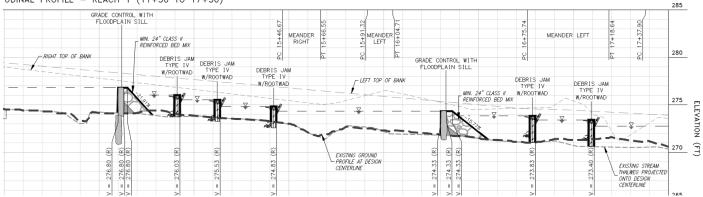
Transport of water in the channel, on the floodplain, and through sediments

HYDROLOGY »

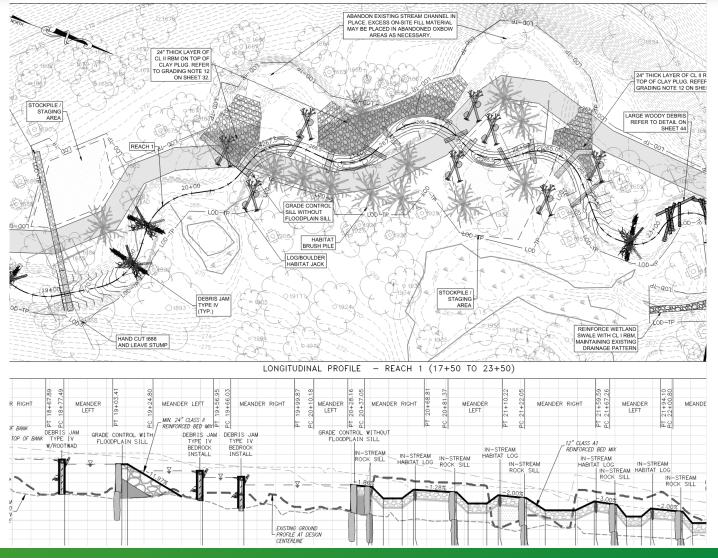
Transport of water from the watershed to the channel



Climate



Final Design - Grading Plan Sheet 1 of 7


UDINAL PROFILE - REACH 1 (11+50 TO 17+50)

Stormwater Planning Division

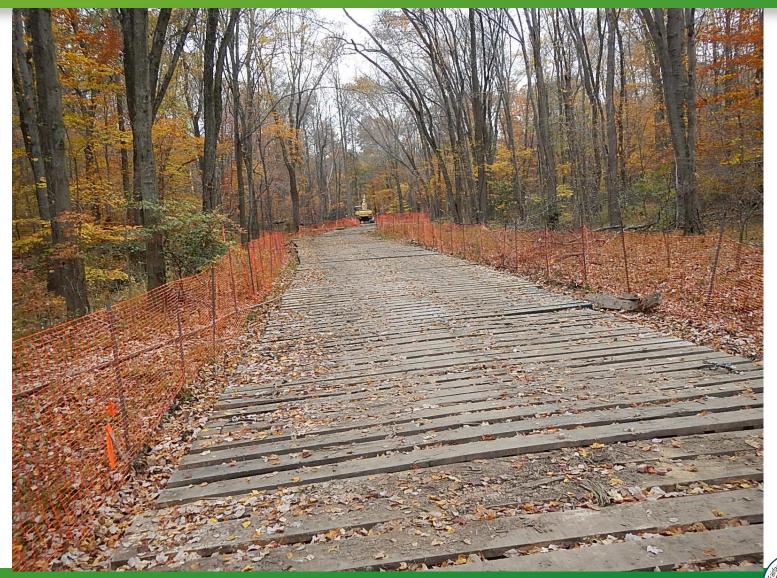
Final Design - Grading Plan Sheet 2 of 7

Natural Channel Design Features

Step Pools

Reinforced Bed & Riffle Grade Control

Cross Vanes



Native Vegetation

Construction Access

Construction Example

21

Restoration Example – During Construction

Restoration Example – 6 Weeks After Construction

Restoration Example – One Year After Construction

Restoration Example – Three Years After Construction

Government Center Stream Restoration Before & After

• Restoration of 1,000 LF of an unnamed tributary of Difficult Run for improvements to water quality and ecological function of the stream corridor.

Before and After Example

Big Rocky Run II

Before

After

27

Before and After Example

Rabbit Branch Stream Restoration

Before

Participant of the second seco

Construction Timeline

- Construction start Summer 2023
- Construction duration Approximately 12 months
- Daily construction inspection
- Weekly construction progress meetings (County, Contractor, Consultant)
- Community Construction progress meetings as needed/requested
- Warranty Inspections
- Monitoring after significant storm events
- Nationwide Permit 27 Monitoring
- Vegetation Monitoring

Contact Information

Justin Pistore – Project Manager 703-324-5685 justin.pistore@fairfaxcounty.gov Fairfax County Stormwater Planning Division 703-324-5500 TTY 711 12000 Government Center Parkway Suite 449 Fairfax, Virginia 22035 www.fairfaxcounty.gov/dpwes/stormwater

To request this information in an alternate format call 703-324-5500, TTY 711

